EnviroSep HTS-NP, Heat Transfer System with Closed Loop Condensate Return features the latest technology in steam-heating applications which allows the heat transfer system to operate under vacuum conditions on the steam side. The Model HTS-NP permits energy savings up to 15% versus conventional building hydronic heating systems. No Vent is required in the condensate system, eliminating the unsightly exhaust flumes in conventional systems. The Model HTS-NP incorporates condensate pumping, eliminating the need for additional condensate handling units. Each system is custom-engineered to meet specific site requirements. The most remarkable feature of the Model HTS-NP is the ability to provide a cost reduction while providing heating system Hot Water at a controlled flow rate. This fully integrated turn-key system speeds installation and start-up which provides significant, initial-investment savings to contractors, engineers, and building owners.

Standard Features:
- ASME, Shell & Tube Heat Exchanger - U-tube, with U-stamp
- Base-mounted, End-suction Pumps
- Condensate Recovery System
- Vortex Air Separator, with Auto Air Vent
- Bladder Expansion/Compression Tank
- Triple Duty Valves & Suction Diffusers
- UL Listed NEMA 12 Industrial Control Panel
- Float & Thermostatic Steam Trap
- Pilot-operated, Motor-operated, or Pneumatic-operated Control Valves
- Make-up Water Assembly, with Safety Relief Valve
- Microprocessor based Temperature Controller
- ASME Section IX Welding

TYPICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam Pressure</td>
<td>2 to 150 psig</td>
</tr>
<tr>
<td>Hot Water Temperature</td>
<td>50 to 240 deg F</td>
</tr>
<tr>
<td>Standard System Flow Rate</td>
<td>5 to 3000 GPM</td>
</tr>
<tr>
<td>Standard Power</td>
<td>460 V (Other Voltages Available)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Based Upon Customer Requirements</td>
</tr>
<tr>
<td>Working Pressure</td>
<td>100 to 150 psig (6.8 to 10.2 barg)</td>
</tr>
<tr>
<td>Working Temperature</td>
<td>< 300 deg F (< 149 deg C)</td>
</tr>
</tbody>
</table>

Options:
- PLC System Controller w/ Touch Screen
- NEMA 7/9 Explosion-proof Rating
- Flexible Pump Connectors
- Seismic or Vibration Isolators
- Plate & Frame Heat Exchangers
- Vertical Inline Centrifugal Pumps
- Combination Air & Dirt Separator
- Specific Performance Criteria (Upon Request)

Unfired Pressure Vessels
Pressure Piping
Model HTS-NP

Heat Transfer System Order Form

Specify the following parameters:

I. System Heat Load = ____________ BTU/hr
II. System Differential Pressure Required = ___________ psid
III. System Flow Rate = ____________ GPM
IV. Steam Pressure (@ Control Valve) = ____________ psig
V. Return Temperature = __160__ °F
VI. Supply Temperature = __180__ °F
VII. System Electrical = ______ V _____ Hz
VIII. System Volume = ____________ Gal.

Note: Tube-side medium assumed to be water, unless otherwise specified.

SYSTEM OPTIONS

Pneumatic-operated Steam Control Valve
- Electronic Positioner
- Pneumatic Positioner

Stand-by Pump
Steam Pressure Gauges
Steam Separator
Vacuum Breaker
Thermostatic Air Vent
Pump Suction Diffuser
Vertical In-line Pump
Split-coupled Vertical In-line Pump
Closed-coupled end-suction Centrifugal Pump
Auto standby pump start on lead pump failure
Auto Pump Alternation
Remote start connection
System drain valves
Flexible Connectors
Vibration Isolation

Digital Temperature Controller with PID Loop and Thermocouple
Remote Temperature Control
1/3 : 2/3 Control Valve arrangement for Variable loads
Control Valve Bypass and Isolation
Condensate Isolation and Check Valves
Condensate Y-Strainer
Single-pass Shell and Tube Heat Exchanger
Panel-mounted Differential Pressure Gauges
Pump Run-time Hour Meter
Outdoor-use Rating
Outdoor Cabinet
System Inlet/Outlet Isolation Valves
System Flow Switch
Differential Pressure Switch across Pump suction/discharge

Regardless of system size, temperature, pressure, fluid medium, or space requirements, EnviroSep can provide solutions to all specialized needs.
Furnish and install one Model HTS-NP. [A] - [B] - [C] - [D] Heat Transfer System with the system capacity to heat ________ BTU/hr from 160 °F to 180 °F when ________ psig steam is available at the Control Valve.

KEY:
[A] = Model # (BTU/hr)
[B] = # of pumps (1,2,3,etc.)
[C] = Parallel (P) or Stand-by (S) pump designation
[D] = Manual (M) or Automatic (A) alternation for multiple pumps

GENERAL - This package shall be factory assembled with pump(s), heat exchanger, hydronic accessories, shell and tube heat exchanger, fabricated steel frame, interconnection piping (welded per ASME Section IX certified welders), UL-listed Industrial Control Panel factory wired for single-point field connection per NEC, (and including Condensate Steam Trap).

PUMPS - Pump(s) shall be single, end-suction type with radially split, top-center line discharge, self-venting casing. Pump construction shall be cast iron, bronze fitted and shall be fitted with a long-life, product lubricated, drip tight mechanical seal, with O-ring seal retainer. Impeller shaft to be 416SS fitted with a SS shaft sleeve and be supported by two heavy duty ball bearings. The design shall allow back pull out servicing, enabling the complete rotating assembly to be removed without disturbing casing piping connections. The pump shall be mounted on a rigid, single base plate and be flexible with guard to the motor. Seal shall be rated for continuous duty at 270°F, motor shall be open drip proof, NEMA MG-1 with 1.15 service factor

HEAT EXCHANGER - Heat exchanger shall be shell and tube type with removable tube bundle. Shell is carbon steel with cast iron heads and tube sheets. Tubes are ¾” OD copper. Unit is rated for 150 psig at 375 °F. Shell-side connections 4” and larger are 150 lb. ANSI flanges and all 3” and smaller are NPT connection. Unit shall carry U-1 form and have ASME stamp for 150 psig operation.

AIR REMOVAL EQUIPMENT - System shall include one tangential air separator with internal stainless steel collector tube. Connections to be flanged with a rating of 150 psig. System shall be equipped with ¾” Pressure Relief Valve, ¾” Pressure Regulating Valve, ASME Compression / Expansion Tank (sized by or provide system volume and temperature difference), and tank fitting, sight glass, and tank drain connections to tank.

TRIPLE DUTY VALVE - System shall include, on the discharge of each pump, a combination valve incorporating three functions in one body: tight shut-off, spring closure type silent non-slam check, and flow measured/throttling. Valve body shall be ductile iron with two ¾” NPT connections on each side of the valve seat. The valve disc shall be bronze plug disc type with high impact engineered resin seat to ensure tight shut-off and silent check valve operation. Valve stem shall be SS with flat surfaces provided for adjustment with open end wrench.

SUCTION DIFFUSER - System shall include, on the suction of each pump a suction diffuser with cast iron body, outlet guide vanes and removable SS strainer.

CONTROL PANEL - System shall include one (1) UL - Listed, NEMA 12, Industrial Control Panel with single-point power connection, pre-wired to all electrical components. Panel shall have thru-the-door fused disconnect; magnetic circuit breaker supplementary motor protector with fast-closing contacts, non-reversing 3-pole contactor, and variable setting, bi-metallic overload relay for each motor; 30 mm Foundry-duty switches; 30 mm Corrosion Resistant pilot lights; control transformer; Automatic Alternator (if required). Operation of each pump shall be Hand-Off-Auto with external connection to terminal blocks. When standby pump(s) are used, the standby pump(s) shall manually/ automatically (customer specified) start on primary pump failure. All internal wiring shall be placed in conduit.

STEAM-POWERED CONDENSATE PUMP - Pump shall be low profile, steam-powered, operated by steam up to 125 psig, not requiring any electrical energy, and safe for use in flammable atmospheres. Body construction shall be cast iron or fabricated steel. The pump shall contain a float operated snap-action mechanism with no external seals or packing, stainless steel trim, and hardened bearing components. Pump shall include stainless steel Inlet and Outlet check valves, and gauge glass.

STEAM TRAP - Steam trap shall be of the mechanical ball float type with cast iron body, NPT connections, and all stainless steel internals. A stainless steel balanced pressure thermostatic air vent shall be incorporated into the trap body withstanding 45 °F of superheat and resisting water-hammer without sustaining damage. Internals shall be serviceable without disturbing piping.

PILOT-OPERATED STEAM CONTROL VALVE - The control valve shall be pilot-actuated, diaphragm-operated, and shall be single-seated, with hardened stainless steel trim and cast iron body. The pilot shall be bolted directly to the valve body and shall be removable without disturbing control connections. The temperature setting shall be adjustable and indicated on a calibrated dial. Temperature sensor shall be solid fill.

PNEUMATIC ACTUATED STEAM CONTROL VALVE - The control valve shall be pneumatically actuated with valve body constructed of cast iron and having stainless steel plug, seat, and stem. The pneumatic actuator shall be of the spring-closed design and shall have a fabric reinforced nitrile rubber diaphragm. Actuator yoke shall incorporate electro-pneumatic, intrinsically safe positioner requiring a 4-20 ma input signal, and compressed air connection for valve operation. The positioner shall compare the electrical signal from a controller with the valve position feedback to overcome varying differential pressure, stem friction, and diaphragm hysteresis.

MANUFACTURER - Shall assume system liability, and performance guarantee and warranty all equipment on system for 12 months after initial start-up.

COPYRIGHT © 2008 by EnviroSep